An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation
نویسندگان
چکیده
Low-rank matrix approximation is a fundamental tool in data analysis for processing large datasets, reducing noise, and finding important signals. In this work, we present a novel truncated LU factorization called Spectrum-Revealing LU (SRLU) for effective low-rank matrix approximation, and develop a fast algorithm to compute an SRLU factorization. We provide both matrix and singular value approximation error bounds for the SRLU approximation computed by our algorithm. Our analysis suggests that SRLU is competitive with the best low-rank matrix approximation methods, deterministic or randomized, in both computational complexity and approximation quality. Numeric experiments illustrate that SRLU preserves sparsity, highlights important data features and variables, can be efficiently updated, and calculates data approximations nearly as accurately as possible. To the best of our knowledge this is the first practical variant of the LU factorization for effective and efficient low-rank matrix approximation.
منابع مشابه
An Efficient, Sparsity-Preserving, Online Algorithm for Data Approximation
The Singular Value Decomposition (SVD) is a longstanding standard for data approximation because it is optimal in the 2 and Frobenius norms. The SVD, nevertheless, suffers from many setbacks, including computational cost, loss of sparsity in the decomposition, and the inability to be updated easily when new information arrives. Additionally, the SVD provides limited information on data features...
متن کاملAn Efficient, Sparsity-Preserving Online Algorithm for Data Approximation: Supplementary Material
001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 1...
متن کاملLow-rank matrix reconstruction and clustering via approximate message passing
We study the problem of reconstructing low-rank matrices from their noisy observations. We formulate the problem in the Bayesian framework, which allows us to exploit structural properties of matrices in addition to low-rankedness, such as sparsity. We propose an efficient approximate message passing algorithm, derived from the belief propagation algorithm, to perform the Bayesian inference for...
متن کاملInput Sparsity Time Low-rank Approximation via Ridge Leverage Score Sampling
Often used as importance sampling probabilities, leverage scores have become indispensable in randomized algorithms for linear algebra, optimization, graph theory, and machine learning. A major body of work seeks to adapt these scores to low-rank approximation problems. However, existing “low-rank leverage scores” can be difficult to compute, often work for just a single application, and are se...
متن کاملTensor completion and low-n-rank tensor recovery via convex optimization
In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In the important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as sparsity measure an...
متن کامل